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To prove Thearem 3 we wse equality (4) and direct estimates, The theorem on asym-
ptotic stability can be formulated analogously,
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We consider the problem of optimizing phase coordinate bounds, We obtain the
conditions for the solvability of the problem and establish the form of the opti~
mal observation laws, The paper is closely related to [1, 2]. The probiem of
optimizing the observation process has been studied from another viewpoint in
(s, 4]1.

1, Let a plant's phase coordinate vector z (¢) from an » ~dimensional Euclidean space
Ry be the solution of the system of equations

=A@z + b)), z(0)=uz (A (1.1)
The vector y (t) accessible to observation is given by the relations
dy () =h(t) H(@®)z(t)dt+ a(t)dE(t), y(0)=0 (1.2)

The elements of the mamices 4 (¢), H (¢), ¢ (¢) and b (¢) are continuous functions, The
random variable z (0) has a Gaussian distribution with the covariance matrix

Do = M (zo — Mz0) (zg — Mzy)7, Dy >0

Here the prime is the sign for wansposition, 3 is the mean, the symbol 1, > 0 signifies
the positive definiteness of mawrix D,. The Wiener process  (¢) does not depend upon
z (0), and the matrix o () ¢’ {(t) > 0,0 < ¢ < 7. Without loss of generality [2] we can
take the dimension of vector y (¢) equal to #. The control of the observation process is
effected by choice of the scalar function / (¢). We consider the linear combination
q'z (T) (the nonzero vector ¢ € Ry) is specified), Let D (I be the covariance martrix
of the conditional distribution of vector z (7) under condition y (s). 0 < s < T.
Problem 1., Determine the function v (/) = A?(t) (the optimal observation law)
which minimizes the expression ¢'D (1) q (1.3)
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such that T
S @) dt <N 1.9)
0

where the constant N > 0 is known,

Functional (1, 3) equails the conditional variance of the quantity ¢'z(7T) of interest to
the observer, The integral (1.4) yields the quality of the control of the observation,
This integral has a simple mechanical sense, Namely [5), integral (1, 4) equals the total
number of measurements on the interval {0. 71. Therefore, requirement (1,4) is a con~
straint on the total number of measurements,

Since the density of observations y (¢) at an instant : is not bounded, we assume a
priori observations of the form

ry= D ppt—1)  O<HST

t{<f
where the constants u; > 0 and 6 (¢) is the delta function, The quantity being observed

equals [1] ) =Y IH )z () +5() § (¢

where 7 (¢,) is a sequence of mutually~-independent equally-distributed Gaussian varia-
bles with zero mean and unit covariance matrix,

2. By z(t. s} we denote the fundamental matrix of the homogeneous system (1. 1)
for b (t) == 0 and we set T
Q =S g (5, TV (e)z(s. T ds
0
where
Vis)=H (s)o(s)a’ (s) ™ H (s
The paper main result is the following,

Theorem, Assume that the coefficients of Eqgs, (1.1), (1,2) satisfy the requirements
of Sect, 1 and that the mawix @ > 0. Then the optimal observation law 7 (¢) selving
Problem 1 has the form 5,

T = B —1t), ISu<u<S... <, ST 2.1

i-]_
where the constants u; > 0 and p; + p; + ... + pm = N, while the integer m <y n
(n+1).
The proof of the theorem consists of four stages,
1°, By r (¢) we denote the matrix satisfying the equation
drity=[—r(@®)Ad (@) — A" O r®)]dt+ V() du()
r0)=D, (01T (2.2)
in which the scalar control x (¢) is chosen from a set U of nondecreasing functions of
bounded variation on the interval [0, 7], equal to zero for ¢ = 0. We recall that equa-
tions of form (2,2) are to be understood in the sense of the corresponding integral iden-
tity, while the integral
S V (s) du (s)

is a Lebesgue-Stieltjes integral, By virtue of the condition r (0) > 0, of the definition
of set U and of Eq, (2,1), the matrix r (¢, ) >0, 0 < ¢t < T, for any functionu € U.
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Sometimes the solution of Eq, (2.2) will be denoted by the symbol r (¢, u) to empha-
size its dependence on the control u (¢). We set

T
||u|]=5|du(t)|
[1]

The aim of the first stage of .he proof is to establish the existence of a control
u (¢) € U which solves an auxiliary Problem 2, namely find a function u (¢) € U, mini-
mizing the functional ¢'r (7, u)™'g, such that [l u{| < N,

Let U, be a set of functions from U7, satisfying the requirement || u || < ¥. We intro-
duce a sequence u; (2), i=1, 2, ... of functions from r, by means of the relations

limg_, ¢'r (T, u)~tg =infy ¢'r(T,u)1g=1

From the definition of set 7, it follows that all the functions u; (¢), 0 < ¢t < T, as well
as their norms, are bounded by the number N. From this and from Helly's second theorem
it follows that some subsequence of the sequence u; {t) converges to u, (t) at each point
of the interval [0, 7] . For brevity let us accept that it is the sequence u; (f) itself that
converges to u,(z). From this and from Helly's first theorem we conclude that u; (2)
converges to ug(t) also weakly,

For any points t,, ty, &, > ¢, of the interval [0, T'] we have

g (t3) — uo (&) 2 o (8) — uy () + uy (&) — up (41)

From this bound and from the pointwise convergence of u,(?) it follows that the function
ug(t) does not decrease, Hence, || u, (| < V. Thus, to prove the optimality of u, (¢)
relative to Problem 2 it remains only to verify that / is equalto ¢'7 (7, u,)7%q.

The boundedness, uniform for 0 ¢t < T and for all 1 = 1, 2. ... of all elements of
matrices r (¢, u;) follows from Eq, (2.2), and from the properties of u; (t) , Therefore,
we can find a constant ¢ > 0 such that

iy
l S (r (8, u) A (), gt l eltr—t) 2.3)

£
for any point ¢, > t; of the interval [0, 7] and for any [, j = 1, 2, ..., n . Here Q;
denotes the /; element of mawix Q. From bounds (2, 3) we see (cf [6], p. 82) that the
integrals !
(r (s, u;) A (s)ds
[
0

as functions of ¢ are of bounded variation of the interval {0, 7] ; the variation is uni=
form in view of the uniform boundedness of the elements of matrices r(t, u;) and of the
theorem's hypotheses, We can establish analogously that the expressions

t t

S V (s) du; (s), SA’ ()7 (s, u)) ds

0 ]
are of bounded variation, uniformly in i/ ,on [0, 7]. From this and from Eq, (2, 1) it
follows that the elements of matrices r (¢, u;) also are of bounded variation, uniformly
in i=1,2, ..,0n [0, T} .

Hence, using the arguments which were applied above to the sequence u; (t), we can

show (passing, if necessary, to a subsequence) that r (¢, u;) converges pointwise to r, ().



152 V.B.XKolmanovakii

Then, from the weak convergence of u; (f) to uo (!) and from Lebesgue's theorem on
passing to a limit under the integral sign, it follows that
t t
lim, ., <S [—r (s, u) A($) — A" (5) r (5, u)| ds + S V (s) du, (s))=
0 0

Oy

1
(—ro (8) A (s) — A" (s) ro (5)) ds + g V (s) duo ()
0

From the last equality, from the convergence of r (¢, u;) to ry (¢) , and from Eq, (2.2)
it follows that r, (¢) = r (¢, uo). By the same token we have established the equality
I=qr(T, u)™y (2.4)
2°, We now prove that
X luoiji = XN (2.5)
Let us assume to the contrary that || u, ]| << ¥ and show thart in this case we can find a
function u; € U; for which
gr (T, u)te< gr(T. u)g (2.6)
It is clear that bound (2, 6) is impossible since it contradicts equality (2. 4), established
in stage 1°, and the definition of the number I. We assume & being a constant,

uy (t) = ug () + €2, &= T (N —| uglf) >0

It is easily verified that u; € U,. Further, using the equality
g'r (T, w)lqg= max,op 2y'¢ — y'r (T, w)] (2.7)

we obtain, in view of (2,2) and of the definition of matrix ¢, that
¢rT, ;) 1g= maXye g [2y'q —y'r (T, up) —y'eQyl <
maxyep (247 —y'r (T, )yl =q'r (T, w)'q
Equality (2, 5) is established,
3°, We fix the matrix r (T, u,) and we consider an auxiliary Problem 3, namely
to find a function (), © (V) = U, with minimal norm, such that

r0, o) =r(0), r(T, 0)=r(T, )

We emphasize that in Problem 3 we seek the optimal  (f) among all functions of
bounded variation on [0, 7| and not just the monotonic ones, as was the case in Prob-
lems 1 and 2, :

The aim of the third stage of the proof is to substantiate that uo (¢) solves Problem 3,
First of all, it is clear that the function u, (¢) is admissible for Problem 3, since fuof =
N < oc, r{0, us) = r(0), and at the instant T the solution of (2. 2), corresponding to
u, ,equals 7 (7, u,). From the existence of the admissible function we can establish,
analogously as in stage 1° of the proof, the existence of the optimal ©, (t) for Problem
3,and since | uy{ = N, we have Jo,j< N.

The validity of the third stage of the proof will be established if we show, firstly, that
the solution of Problem 3 is yielded by a nondecreasing function and, secondly, thatu, (f)
is optimal for Problem 3 in the class 7, Let us assume that oo (¢) is not an increasing
function, We then set

Wo () = gy (f) — e (t), Wy (0) = e, (0) =0 (0Kt < T)



On certain impulse observation laws 153

t t
200: (2) =-S!do)o(t)l+«>o(t)2moz(t)-=S|dmo(t)|—mo(t)
0 0

and, by virtue of our assumption, the function ©¢g (¢) has points of growth on {0, 7], i.e.
@l > 0; consequently, | wo, 1 < N. On the basis of (2. 7) we have

7r (T u) g =maz,e p (209 —y'r (T, uo)y]
From this and from (2, 2), and because @y (t) is nondecreasing, we conclude that
I=qr(T,u)lqg=
T

maxvegn[zy’q —y7 (0.1 r (020, T)y —y'§ 2 (&, DYV () (s, T) don (5) y] >
T

mazeg [~ {7EDV@O6 Doy +2e—yr O.NrOz 0.7 y] =
[}
gr (T, 0n)t ¢
Hence, the nondecreasing function oy, & U, solves Problem 2. However, || wy, [ < N,
Therefore, by a verbatim repetition of the arguments in stage 2° of the proof of the theo-
rem (with u, replaced by wy,), we are convinced of the existence of a function 4, € U,,
|| u |} = N, for which :

(T, u) g < ¢’ r (T, 0) g < ¢'r (T, ug)™2 g

The latter is obviously impossible because it contradicts the optimality of uo () in
Problem 2, The optimality of u, (t) in the class U, is established in like manner,
4°. On the basis of stages 1°* and 2° of the proof the solution of Problem 2 is

yielded by a nondecreasing function with a norm equal to N. On the other hand, by
virtue of stage 3°, the solving of Problem 2 is equivalent to the solving of Problem 3,
which in the usual fashion reduces to the moment problem in view of the linearity of
Eq. (2,2) (see [3, 7]). Therefore, with due regard to [7] and to stages 1° - 3°, the opti-
mal function solving Problem 2 is a nondecreasing piecewise-constant function with a
norm equal to N and with a number of jumps not exceeding Y/; n (n + 1).

Finally, let us ascertain the relation of Probiem 1 to Problem 2. By virtue of [1] the
mawix D™ (1) is a solution of the system of equations

UTl(t)y= =Dl () A (D~ A DV (Y + V 9y @ (2.8)

Any nonnegative function v (t) satisfying requirement (1. 4) can be associated with a
function u (¢) of bounded variation on [0, T)

t
u(t) = S T (8) ds, u(0) =20 2.9

0
and, in view of (1.4), Il u || < &. Let us extend the set of funetions v (¢ up o U, < U,
by formula (2. 9), Then Problem 1 turns into Problem 2. The inverse correspondence
holds not for any function » (#) of bounded variation but only for those which do not con-
tain a singular component [8], In particular, such a correspondence holds for piecewise-
constant functions u (¢). From this and from the established form of the optimal function
in Problem 2 it follows that the optimal function v () in Problem 1 can be chosen in
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accordance with (2,1). The theorem is proved,

3, One of the hypotheses in the theorem proved in Sect, 2 is the requirement Q > 0.
Let us formulate certain conditions in terms of the coefficients of Egs. (1. 1), (1.2), under
whose fulfillment the mamix Q is positive definite,

Lemma, Assume that the matices 4, H, o are constant and satisfy the require-~
ments of Sect,1, Then @ > 0 if and only if the rank of the matrix

R, = (H', A'H’, ..., (A")"1H")

equals the number », namely, the dimension of system (1.1).
Proof, From the results in [2] it follows that the necessary and sufficient condition
for the positive definiteness of @ is that the martix

R, = (H' ("1, A'H' (oY%, ..., (AW H (07)7)

be of full rank, It is also clear that from the condition oo’ >0 follows the nonsingular-
ity of matrix ¢. Hence, it is sufficient to show that the ranks of matrices 2, and R,
are equal for any nonsingular o,

By Rs we denote a block diagonal mawix of dimension n? X n? with elements (¢")™
on the main diagonal, The rank of mawix R, equals »* because o is nonsingular,
Mareaver, R, = R,R, (3.1)

Thus, the equality of the ranks of matrices R, and R, follows from formula (8,1) and
from Sylvester's inequality ( [9], p.57). The lemma is proved,

Using [3], analogously to the proof of the lemma, we can obtain certain conditions
for the positive definiteness of mamix @ also for the case ‘of variable coefficients 4,
H, o. For example, let the functions 4, H, ¢ satisfy the requirements in Sect.1 and
let there exist a point s & {0, T'| in some neighborhood of which the derivatives of
the matwrices 4, H up to order n — 1 are continuous, while at the point s the rank of
the matrix (Ky (&) -y Kn (5))
equals the number n , where dK, (s)

K, (s) = H' (s), K, (= =+ A’ (s) K (s)
Then mawix Q¢ > 0.

The theorem proved in Sect, 2 reduces the question of an optimal observation law to
the problem of minimizing a scalar function of a finite number of variables, For this
we should solve Eq,(2, 8) with y (¢) equal to (2.1), As a result functional (1, 3) proves
to be a scalar function of the variables i1, and ;. Let us illustrate what we have said
by examples, :

Example 1, LetEgs. (1.1),(1.2) be scalar with constant coefficients, where
H (t) = o (t) = 1. Then, according to Theorem 1 the optimal observation law has the
form v (t) = N8 (¢t — ¢;). Substituting this v (¢) into (2, 8), we obtain that ¢, = T when
a>0;t =0 if a< 0; while for ¢ = 0 the value of functional (1, 3) does not depend
upon the actual instant the observations are made,

Example 2, LetEgs, (1.1), describing the free motion of a material point on a
straight line, have the form )

92

A=z, =&@®=0 (3.2)
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Matrix D (0) is diagonal with diagonal elements d,, d, equal to the a priori vari-
ances of the coordinate and of the velocity, respectively, We assume that the coordinate
is observed, i, e,

dy (t) = h (t)zy(t) dt + dE (2) (3.3)
and we are required to minimize the variance of the velocity z, (T) at the end of the
observation process,

According to the theorem the optimal observation law y (¢) solving Problem 1 (in

which ¢’ = (0, 1)) for the system (3, 2), (3. 3) has the form

P(t) = ugd (¢t — tg) + 1y (t — ;) + 1,0 (¢ — 1),

where t; are certain points of the interval [0, 7'} and the nonnegative constants p, are
subject to the requirement u; + p, + B3 = 1. From this and from Eq, (2. 8) we obtain
T -1
om=unﬂpmw+ywmmmﬂﬂmﬂ (T, 0) 3:4)
0
where the elements v;; of matrix p, are equal zero except for v,; = 1. The elements
z3; (¢ 0) of the matrix z (¢, 0) are

20 (6, 0) = 255 (8, 0) = 1, 205 (£, 0) = ¢, 25, (1, 0) = 0

Carrying out the simple calculations we obtain from (3. 4) that Problem 1 is reduced
to the determination of the numbers u;, ¢; which maximize the function

A= (g1 1) (@' + piy? T pats? + pats?) — (Maty + oty -+ pats)?
W0 F ot =1,0<< T, i=1,23 (3.5)

Here A is the determinant of the matwrix occurring within the brackets in (3. 4),
However, for any fixed p; satisfying constraints (3, 5), the function in the variables

4 (4 =% 0) @2 + 1) (uah® F Rate? + Bats®) — (it + Hats + pgts)? (3.6)

is positive on the basis of Sylvester's criterion for positive definiteness (see [9], p.151).
In other words, the quadratic form (3, 6) in the variables z; is positive definite for any
fixed u,, i.e, its maximum with respect to ¢;, 0 < ¢; < T, is reached at one of the
vertices of the three-dimensional cube 0 < t; < T, i = 1,2, 3.From this and from the
fact that the function

(a7t + 1dzt + 47T, 0<p <
achieves 2 maximum when p = 1, it follows that in the original Problem 1 the quantities
ty =t,= ty = T, i,e, all observations are carried out at the end of the observation
process,
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ON THE PCSSIBILITY OF GASDYNAMIC EFFECTS AT THE CRITICAL POINT
OF THE PHASE EQUILIBRIUM
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A possibility is indicated of appearance of density excursions in one~dimensional
unsteady fluid flows near the critical point of the phase equilibrium, resulting
from the singularities in the equation of state,

The present investigations are concerned with the question, whether the classi-
cal solutions of the problem and the initial conditions for the one-dimensional
unsteady gasdynamic equations can become infinite in the nonisoentropic case,
Here we have to comider a system of three quasilinear hyperbolic equations
which, as we know [1, 2], usually have unbounded solutions, On the other hand,
the system of gasdynamic equations has a number of specific properties, Of those
the most important is the presence of a single invariant, i, e, of a function which
remains bounded [1], Another important property consists of the fact that the
generalized Riemann invariants satisfy multi-dimensional integral equations of
Volterra type, in which the cone of integration is represented by the domain of
definition of the hyperbolic equations and the boundedness of the solution follows
from the fine properties of the integrability of the kernel, In the terms of the
gasdynamic equations the latter lead to restrictions imposed on the equations of
state, The properties themselves follow from the boundedness of the variation of
entropy along the sonic characteristics and from the weak linearity (tangency)
of the entropic characteristics [3],

The conditions which must be imposed on the equations of state in order to secure the
boundedness, are expressed by the following inequalities 31
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